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This paper shows the use of chaos control techniques within a periodic window making use of the fact that
the infinite variety of unstable periodic orbits coexist with a stable periodic orbit. The original stable periodic
orbit can be distorted into a chaoslike state induced by small external excitations. When this perturbed state
approaches an unstable periodic orbit of the original system, control methods can be applied to stabilize the
system onto the particular orbit. This technique is applied in the period-3 window of the logistic map using
constant excitations and a self-locating control scheme.@S1063-651X~96!12112-7#

PACS number~s!: 05.45.1b

An advantage of controlling chaos is that the technique is
able to stabilize and switch between different orbits utilizing
only small controls making use of the sensitive property of
chaos and an infinite number of naturally existing unstable
periodic orbits embedded within a chaotic attractor@1,2#.
The technique of chaos control has been applied to mechani-
cal @3#, chemical@4#, electronic@5#, laser@6#, communication
@7#, and biological systems@8# and these achievements indi-
cate a vast potential for implementations that may result in
new technologies to solve important problems in diverse
fields. In most previous studies, the technique of chaos con-
trol has been limited to systems that are necessarily set
within a chaotic regime. Until very recently it has generally
been regarded that the same advantage cannot be achieved in
nonchaotic systems~i.e., nonlinear dynamical systems set
beyond chaotic regimes! @2#. However, this paper seeks to
adjust this perception, thus broadening the possible applica-
tions.

A very recent report@9# by Christini and Collins showed
that the technique of chaos control can be applied to noncha-
otic systems. The basic idea was as follows. A nonlinear
dynamical system is defined at some parameter setting be-
yond the chaotic regime, referred to as a nonchaotic system.
With this configuration, the system has a stable periodic mo-
tion though some unstable periodic orbits may coexist. To
change the system from the stable periodic orbit to one of the
unstable periodic orbits, one deliberately adds external noise
into the nonchaotic system. The excitation of small noise
may destabilize the stable periodic motion and induce a cha-
oslike state. When the state is close to a desired unstable
orbit the Ott-Grebogi-Yorke control technique@1# can be ap-
plied to stabilize the system onto the orbit. Switching be-
tween the unstable orbits can be carried out by combining
excitations and control techniques. Thus flexible selection of
different performances for a system by the use of only small
control efforts is achievable in nonchaotic systems. It is par-
ticularly significant in engineering where many systems can-
not necessarily be set in a chaotic regime.

In Ref. @9#, the feasibility of this idea was shown in a
parameter range where only a few unstable periodic orbits
were available. In this paper we are particularly interested in
activating control within one of the periodic windows that

typically exist between chaotic regimes. As an illustration, a
bifurcation diagram for the logistic map

xi115axi~12xi ! ~1!

is shown in Fig. 1, wherea is a parameter. This diagram
displays stable periodic orbits~some of them labeled by P1,
P2, P4!, unstable periodic orbits~broken curves!, chaos
~dots!, and periodic windows~one of which is marked as a
P3 window!. A closeup of the region 3.8,a,3.9 is included
showing a detailed view of the P3 window where a stable
period-3 orbit exists. Each bifurcation in the cascade of
period-doubling bifurcations produces an unstable periodic
orbit ~broken curves!, which, as the parameter increases, ex-
tends into the regimes of chaos and importantly also into the
periodic windows. It is known that there are an infinite num-
ber of such unstable periodic orbits that coexist with stable
periodic orbits of the periodic windows. Thus a system, set
in a periodic window~such as the period-3 window shown in
Fig. 1!, possesses a rich resource of different periodic orbits.
The system can be maneuvered onto any of these unstable
periodic motions provided that they can be approached and
stabilized by control.

Outside the periodic windows, for example, if one sets the
system in the parameter range of the period-4, orbit say at
a53.5 in Fig. 1, then the system has only three orbits avail-
able: the period 1, 2, and 4. However, for the logistic map,
within the period-3 window, there are an infinite number of
unstable periodic orbits of all periods. The period-3 window
presents one of the largest reserves for selection of orbits for
control. In addition this window is a predominant window,
which is stable over the widest parameter range compared
with other periodic windows.

Christini and Collins@9# showed that a stable periodic
motion of a nonchaotic system can be excited into the cha-
oslike motion under the influence of certain levels of noise.
We here consider the use of constant perturbations to a non-
chaotic system to stimulate a chaotic state. Thus, for the
logistic map, a term of constant perturbationd can be added
into the original system Eq.~1!, which is rewritten in the
form

xi115axi~12xi !1d. ~2!
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In other works an additive term was used by Shinbrot in
synchronization of coupled maps@10# in which the constant
term plays the role of suppressing a chaotic state into a pe-
riodic state, while Bradley used parametric excitations to de-
stabilize a stable periodic state in a phase locked loop@11#.
In this paper, constant excitations are applied in order to
destabilize a stable periodic state resulting in a chaotic state
that approaches a desired unstable orbit. Constant excitations
may efficiently generate a chaotic state and are much simpler
than the use of external noise for applications.

Figure 2 shows that the stable period-3 motion of the P3
window can be distorted into a ‘‘fuzzy’’ periodic motion or
even a chaotic motion under different levels of constant ex-
citations. Comparing the results of two different levels of
excitations d50.008 ~I5200–600! and d50.01 ~i5800–
1200!, the more intensive excitation induces more ‘‘fuzzy’’
periodic motion. It can be seen that the area of scattered dots
is enlarged with an increase of the level of excitations. Initi-
ating the excitation ofd50.02 during the time interval
i51400–1800, the P3 orbit is completely destabilized result-
ing in a chaoslike state. A phase portrait of the induced cha-
otic state is shown in Fig. 3 using the delay coordinatesxi
andxi11. The induced chaotic state forms a stable attractor,
which lies nearby the unstable periodic orbits~labeled by
asterisks, plusses, open circles, and crosses indicating P1, P2,
P4, and P5 orbits, respectively! of the original map Eq.~1!.
The induced chaotic state can visit close to any of these
unstable periodic orbits of the original system. Thus the tech-

niques of chaos control@1,12,13# can be applied to stabilize
the system onto a desired orbit with small controls.

In this paper, to stabilize orbits of the logistic map, the
self-locating control method@12# is used. The control algo-
rithm is based on the Newton method to pinpoint a desired
periodic solution utilizing the feedback of an output se-

FIG. 1. A cascade of period-doubling bifurca-
tions of the logistic map with a variation of the
parametera from 2.8 to 4. The solid curves
marked P1, P2, and P4 correspond to stable
period-1, period-2, and period-4 orbits, respec-
tively, within the different parameter ranges. The
broken curves beyond the stable P1, P2, and P4
orbits correspond to unstable orbits, which extend
into the chaotic regimes as the parameter in-
creases. Between the chaotic regimes there exist
periodic windows, one of which is denoted as a
P3 window. Within the P3 window, there is a
stable period-3 orbit~solid curves!, which coex-
ists with these unstable periodic orbits~broken
curves!.

FIG. 2. The logistic map behaves in the manner of period-3
motion as the parameter is set ata53.83 within the period-3 win-
dow. The fuzzy period-3 motion and chaoslike motion can be in-
duced by introducing small constant excitations at the levels of
d50.008 ~i5200–600!, d50.01 ~i5800–1200!, and d50.02 ~i
51400–1800!. The influence of destabilizing a stable periodic orbit
increases as the level of the excitation increases.
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quence on accessible parameters. The method can automati-
cally detect the location of the orbit with high accuracy dur-
ing the process of stabilization. The application of this
method only requires an approximate location of the desired
orbit so that it is not necessary to find the precise location of
the orbit before control.

For the logistic map we usea as the control parameter
and the system is initially set within the range of the period-3
window by choosinga53.83. The value of the constant per-
turbations is set tod50.02. Figure 4 demonstrates the stabi-
lization and switching between the period orbits~indicated
by P1, P2, P3, P4, P5, P7, and P8 where the integer stands
for the periodicity of the orbit! by plotting the variablex
against iteration numberi . These periodic orbits are all un-
stable except for the P3 orbit. Before control, the approxi-
mate locations of these unstable orbits need to be estimated.
An easy way to find this information for the logistic map can
be achieved by the use of the bifurcation diagram~Fig. 1!,
with an approximate estimation made via the observation of
the projection of a stable orbit with an increase of the param-
etera. By so doing, we obtain the approximate locations for
P1,>0.75; P2,>0.4; P4,>0.3; P5,>0.5, P7,>0.92, and
P8,>0.7 ~ata53.83!, which are close to one of points of the
unstable periodic orbits. The precise location for P3 is very
easy to obtain since the system converges to this stable
period-3 orbit after some transient time, here the P3 location
of 0.504 6665 is one of points of the period-3 orbit.

Initially, the original system behaves in a regular motion
of period-3~i51–200! without perturbation~d50! and con-
trol. To change the state of the system from P3 to P1, first a
constant perturbationd50.02 is applied to the map resulting
in a chaotic motion~just after i5200!. When the induced
chaotic state is close to P1~within a distance of 0.1!, the

perturbation is turned off~i.e., d50! and simultaneously the
control is activated. Thus the system is locked onto P1 and
stabilization is maintained for a further 100 iterates~i5206–
306!. To switch the motion from P1 to P2, the control is
turned off while concurrently turning on the excitation~d
50.02!. Once again a chaotic state results, which visits close
to P2. As before the excitation is ceased and control applied
to maintain the state on the P2 orbit. When both control and
excitation are turned off the system converges towards the
naturally stable period-3 orbit as shown from P7 to P3~after
i51700!. Figure 4 demonstrates the process of the transition
of these orbits from P3→P1→P2→P5→P4→P8→P7→P3 in
the period-3 window of the logistic map. The locations of
these orbits are P1, 0.7389034; P2, 0.3691614; P4,
0.2991621; P5, 0.4318443; P7, 0.9102810; and P8,
0.7265884 precisely detected during the control process us-
ing the self-locating control scheme.

In conclusion, an infinite number of unstable periodic or-
bits coexist in a periodic window. Taking advantage of this
feature, one can flexibly manage a system among the infinite
variety of periodic motions by means of external excitations
and chaos controls. In this paper, the feasibility for this tech-
nique is shown in a period-3 window using chaotic states
induced by constant excitations and the self-locating control
scheme. Switching among many different naturally existing
orbits only using small controls is achievable in periodic
windows where a system is originally configured as a non-
chaotic system.
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